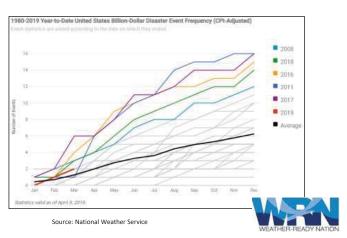
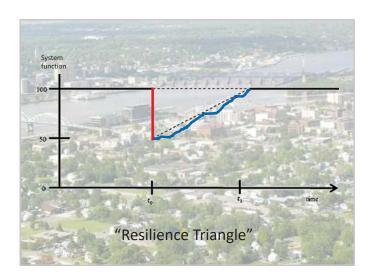
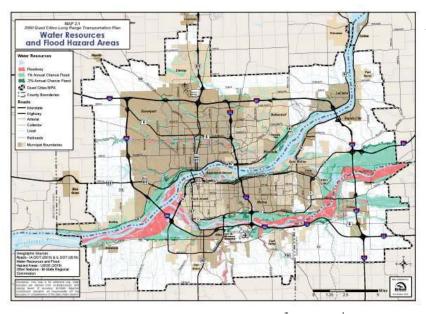
Extreme Weather and Infrastructure Resilience

Iowa DOT- MPO/RPA Quarterly Meeting 6/23/21

BI-STATE REGIONAL COMMISSION FHWA PILOT PROJECT


GENA MCCULLOUGH, ASST. EXECUTIVE/ PLANNING DIRECTOR


FHWA Resilience and Durability to Extreme Weather Pilot Program

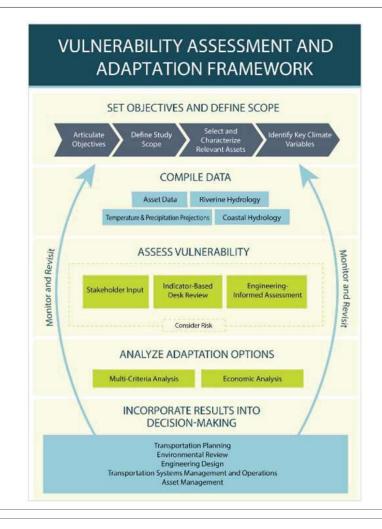


Purpose of the Grant

- Conduct vulnerability assessment
- Determine strategies to mitigate impacts

Quad Cities, Iowa/Illinois

- 5 Mississippi River Bridges + Rock River Crossings
- 4 Interstates, 5 U.S. Highways, 10 State Highways
- 3 Railroads Class I & II
- 24 Barge Terminals
- 2 Locks/Dams
- 3 Public Transit Systems +Multiple On-Demand Private Providers & Taxis Services
- 2 Airports
- 2 National Trails



Project framework

- Develop an Advisory Committee
- Secure data
- Access vulnerability and adaptation options
- Determine priorities and opportunities to incorporate adaptation
- Integrate assessment

Stakeholders

Environmental/Other

- NOAA-NWS, State Climatologists
- Corps of Engineers, NRCS, DNR/IEPA
- Industry, Health Depts., Universities

Transportation

- FHWA, State DOTs, County & City Engineers/Planners, EMAs
- Transit, Railroads, Airports, Trails Interests

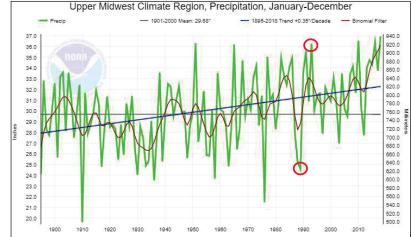
Policy and Adaptation

- Planning Advisory Group
- Transportation Technical and Policy Committees

Summary of data trends

- FEMA Flood Risk Report
- CMIP Climate Data Processing Tool
- National Climatic Data Center
- FHWA, IL DOT, IA DOT
- Midwest Regional Climate Center
- US Geological Survey
- National Weather Service

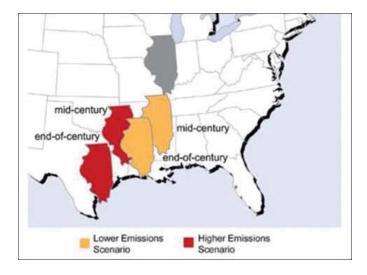
- Increased variability
 - Floods, tornadoes, storms
- Increased precipitation
 - Frequency
 - Volume
- Increased disruptions for transportation networks
 - Impacts CAN be reduced through adaptive actions



Variability vs. Trend and Extremes

Trend

Variability


Extremes

Future Climate

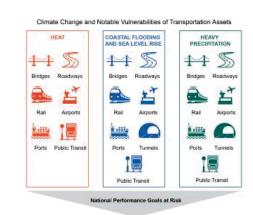
Hazards today and in the future

Heat

Flood, river and flash

Drought

Wildfires (rare)


Winter Storms

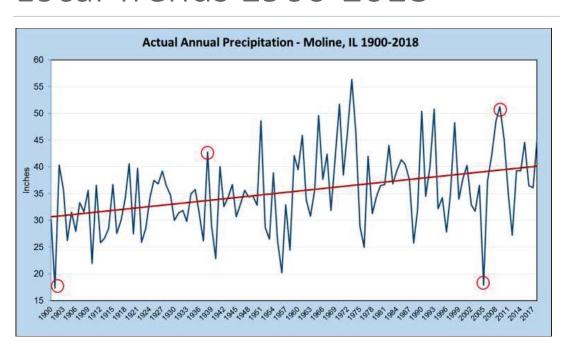
Severe weather

Tornadoes, hail, damaging wind

Hurricanes? Coastal Flooding?

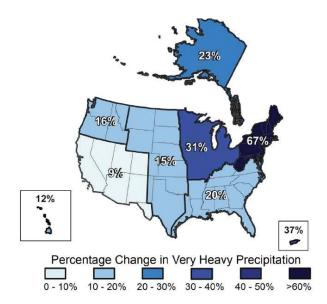
These are confounded with an increase in social vulnerability.

Extreme weather in the Quad Cities


- River flooding
- Flash flooding
- Combined storms
 - Hail
 - Lightning/ thunder
 - High winds
- Severe winter storm
- Extreme heat
- Tornadoes

Local Trends 1900-2018

Learning to Live With The River – 1993, 2008, 2019

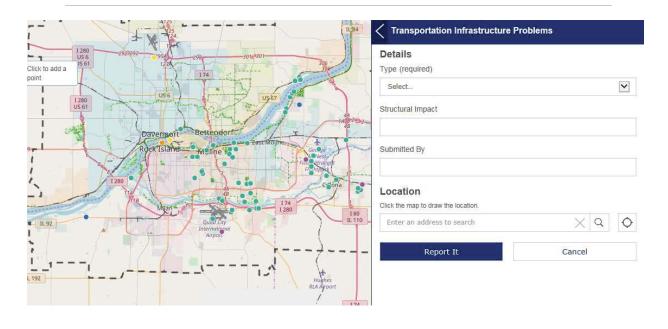

Record Crests 22.70 ft on 5/2/2019 1st 22.63 ft on 7/09/1993 2nd

Records for Consecutive Days above Flood Stage

96 days: 2019 – 3/15 to 6/18 43 days: 2011 – 3/29 to 5/10

Data sharing

- City inundation data?
- Storm surge backup on the Mississippi?
- Late season floods?
- Straight line winds?
- Main routes that have underground power lines?
- Extreme heat?
- Other?


Source: Climate Change Impacts in Iowa: Report to the Governor and Assembly, 2010

Critical Infrastructure & Facilities

- Evacuation gathering sites
- Public works facilities
- Transit hubs
- Transit transfer points
- Rural transit operations
- Airports
- Port facilities
- Railyard

Stakeholder Survey & Interviews

Stakeholder Workshop

- Vulnerability assessment
- Adaptation options

Vulnerability assessment = what critical facilities/infrastructure are more vulnerable to disruptions or likely to be impacted by extreme weather, now and in the future.

Defining Criticality Criteria

Stakeholder & **Transportation Technical Committee Input**

Criticality assessment

= involves identifying the most critical elements of the transportation system for analysis, using quantitative and qualitative data.

- High use areas/routes
- Land use/destinations of importance
 - i.e. RI Arsenal, densely populated areas
- Mississippi River crossings
- Medical/emergency routes
 - i.e. hospital access
- Redundancy throughout network
- Economic vitality
 - i.e. access to large employers

Data Input for Weighted Sum Overlay Analysis

Bridges (AADT)

1
2
3
4
5
1

IL Roadways (AADT)

		,	`
	Natural Breaks	Class	ification
500 - 4,250	0		1
4,251 - 9,4	400		2
9,401 - 17	,900		3
17,901 - 3	2,600		4
32,601 - 6	9,700		5

IA Roadways (AADT)

Natural Breaks Classificati	Natural Breaks Classification	
500 - 3,520	1	
3,521 – 8,900	2	
8,901 – 17,100	3	
17,101 - 30,000	4	
30,001 - 72,000	5	

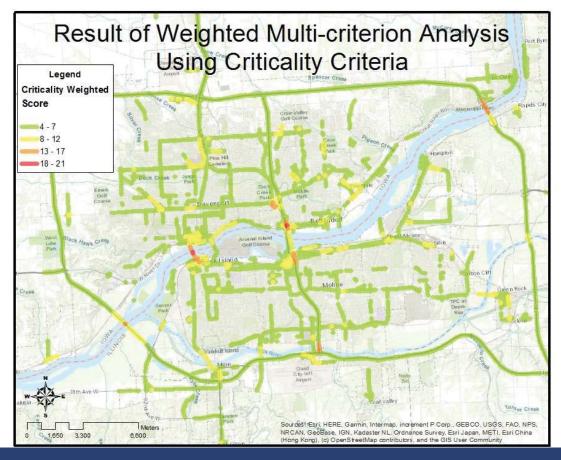
Access to Critical Facilities

All access road segments

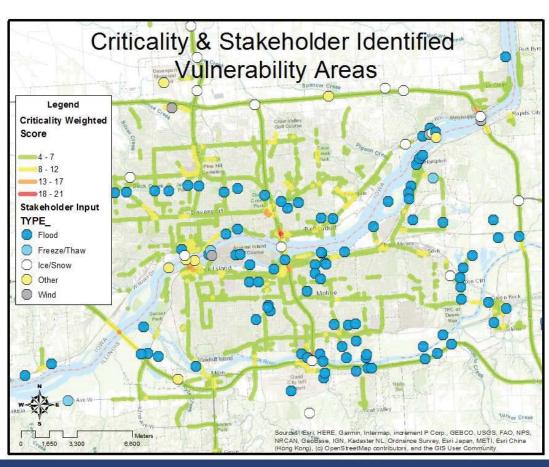
Access to Major Employers

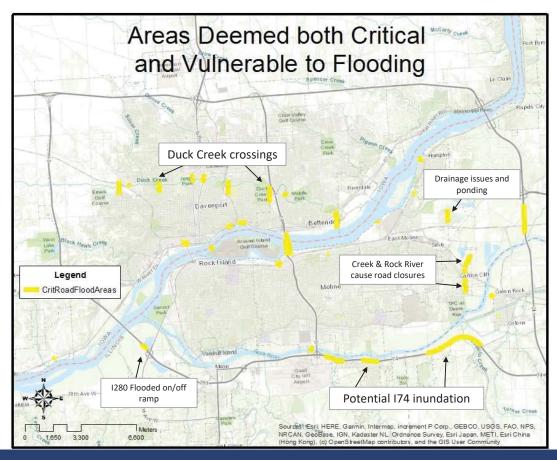
All access road segments

Bettendorf Transit (Ridership)


Natural Breaks Clas	sification of	Avg. Weekday Ride	rs
0	- 76	1	
7	7 - 95	2	
91	6 - 111	3	

Davenport Transit (Ridership)


Natural Breaks Classification of Avg. Weekday Ridership			
	0 - 110	1	
	111 - 186	2	
	187 - 302	3	


MetroLink Transit (Ridership)

latural Breaks Classification of Avg. Weekday Ridership			
0 - 634	1		
635 - 1,545	2		
1,546 -2,518	3		

23

Focus for Adaptation Options Prioritization

- Most at-risk
 - Corridors
 - Hot spots
- Already Planned Projects
- Asset by State or Jurisdiction
- Combination

Priority Segments for Adaptation Options Review

Review Priorities by Potential Solutions

Advisory

Intelligent Transportation System (ITS)

Motorist alerts

Communication & Outreach Plan

Road side active warning systems

(Asam et. al., FHWA, 2015)

Control

Variable speed limits

Vehicle restrictions

Route restrictions

Road-surface treatments

Treatment

Green infrastructure

Levee construction (traditional and living)

Culvert sizing

Road/bridge elevation

Other Policies and Procedures

- Climate and emissions policies
- Emergency Management
- Mitigation Measures
- Disinvestment
- Solutions with co-benefits
- Environmental Justice and Equity

2:

Criteria for Adaptation Options Review

1.	Effectiveness of responding to climate stressors across a range of extreme weather scenarios?	High effectiveness	Low effectiveness
2.	Are the capital/life-cycle costs high?	High costs	Low costs
3.	Are there environmental impacts that may occur?	High impacts	Low impacts
4.	Are there permitting constraints to consider?	High constraints	Low constraints
5.	Will the option be publicly accepted?	High acceptance	Low acceptance
6.	Are there environmental justice impacts to consider?	High impacts	Low impacts
7.	Will the adaptation impact the vulnerability and increase resilience?	High impact	Low impact
8.	Is it a feasible option?	High feasibility	Low feasibility

ე.

Incorporating into Transportation Planning Process

LRTP Extreme Weather Resilience Objective

- Developed objective for LRTP policy statement
- Discussed Critical and Vulnerable Areas
- Examined resilience review for planned projects

TIP Resilience Discussion & Project Selection

- Recognize resilience in TIP use environmental maps to highlight vulnerabilities
- Incorporate resilience similar to EJ review as additional input prior to decisions

Technical Asst. Resilience in Project Development Process

- Write grants for priority resilience projects
- Work with local jurisdictions during project development process to incorporate adaptation options into project development

Lessons Learned

Priorities and Opportunities for Adaptation

+

Integrate Results & Recommendations

Lessons Learned – Peer Exchange

- Growing Staff Capacity in Climate
- Data Integration
- Valuing Resilience
- Proactive Collaboration
- Mainstreaming Resilience
- Resilience Informed Planning

Questions?

GENA MCCULLOUGH

GMCCULLOUGH@BISTATEONLINE.ORG

